GLOBAL OPTIMIZATION OF FINITE MIXTURE MODELS by Jeffrey
نویسندگان
چکیده
Title of dissertation: GLOBAL OPTIMIZATION OF FINITE MIXTURE MODELS Jeffrey W. Heath Doctor of Philosophy, 2007 Dissertation directed by: Professor Michael Fu Robert H. Smith School of Business & Professor Wolfgang Jank Robert H. Smith School of Business The Expectation-Maximization (EM) algorithm is a popular and convenient tool for the estimation of Gaussian mixture models and its natural extension, modelbased clustering. However, while the algorithm is convenient to implement and numerically very stable, it only produces solutions that are locally optimal. Thus, EM may not achieve the globally optimal solution in Gaussian mixture analysis problems, which can have a large number of local optima. This dissertation introduces several new algorithms designed to produce globally optimal solutions for Gaussian mixture models. The building blocks for these algorithms are methods from the operations research literature, namely the Cross-Entropy (CE) method and Model Reference Adaptive Search (MRAS). The new algorithms we propose must efficiently simulate positive definite covariance matrices of the Gaussian mixture components. We propose several new solutions to this problem. One solution is to blend the updating procedure of CE and MRAS with the principles of Expectation-Maximization updating for the covariance matrices, leading to two new algorithms, CE-EM and MRAS-EM. We also propose two additional algorithms, CE-CD and MRAS-CD, which rely on the Cholesky decomposition to construct the random covariance matrices. Numerical experiments illustrate the effectiveness of the proposed algorithms in finding global optima where the classical EM fails to do so. We find that although a single run of the new algorithms may be slower than EM, they have the potential of producing significantly better global solutions to the model-based clustering problem. We also show that the global optimum matters in the sense that it significantly improves the clustering task. Furthermore, we provide a a theoretical proof of global convergence to the optimal solution of the likelihood function of Gaussian mixtures for one of the algorithms, namely MRAS-CD. This offers support that the algorithm is not merely an ad-hoc heuristic, but is systematically designed to produce global solutions to Gaussian mixture models. Finally, we investigate the fitness landscape of Gaussian mixture models and give evidence for why this is a difficult global optimization problem. We discuss different metrics that can be used to evaluate the difficulty of global optimization problems, and then apply them to the context of Gaussian mixture models. GLOBAL OPTIMIZATION OF FINITE MIXTURE MODELS
منابع مشابه
Global Convergence of Model Reference Adaptive Search for Gaussian Mixtures
While the Expectation-Maximization (EM) algorithm is a popular and convenient tool for mixture analysis, it only produces solutions that are locally optimal, and thus may not achieve the globally optimal solution. This paper introduces a new algorithm, based on the global optimization algorithm Model Reference Adaptive Search (MRAS), designed to produce globally-optimal solutions in the estimat...
متن کاملThe Negative Binomial Distribution Efficiency in Finite Mixture of Semi-parametric Generalized Linear Models
Introduction Selection the appropriate statistical model for the response variable is one of the most important problem in the finite mixture of generalized linear models. One of the distributions which it has a problem in a finite mixture of semi-parametric generalized statistical models, is the Poisson distribution. In this paper, to overcome over dispersion and computational burden, finite ...
متن کاملA GUIDED TABU SEARCH FOR PROFILE OPTIMIZATION OF FINITE ELEMENT MODELS
In this paper a Guided Tabu Search (GTS) is utilized for optimal nodal ordering of finite element models (FEMs) leading to small profile for the stiffness matrices of the models. The search strategy is accelerated and a graph-theoretical approach is used as guidance. The method is evaluated by minimization of graph matrices pattern equivalent to stiffness matrices of finite element models. Comp...
متن کاملModel Selection for Mixture Models Using Perfect Sample
We have considered a perfect sample method for model selection of finite mixture models with either known (fixed) or unknown number of components which can be applied in the most general setting with assumptions on the relation between the rival models and the true distribution. It is, both, one or neither to be well-specified or mis-specified, they may be nested or non-nested. We consider mixt...
متن کاملGenetic Algorithms for Finite Mixture Model Based Tissue Classification in Brain Mri
Finite mixture models (FMMs) are an indispensable tool for unsupervised classification in brain imaging. Fitting a FMM to the data leads to a complex optimization problem. This optimization problem is difficult to solve with standard local optimization methods (e.g. by the expectation maximization (EM) algorithm) if a good initialization is not available. In this paper, we propose a new global ...
متن کامل